Whole-body lift and ground effect during pectoral fin locomotion in the northern spearnose poacher (Agonopsis vulsa).

نویسندگان

  • Bryan N Nowroozi
  • James A Strother
  • Jaquan M Horton
  • Adam P Summers
  • Elizabeth L Brainerd
چکیده

The northern spearnose poacher, Agonopsis vulsa, is a benthic, heavily armored fish that swims primarily using pectoral fins. High-speed kinematics, whole-body lift measurements, and flow visualization were used to study how A. vulsa overcomes substantial negative buoyancy while generating forward thrust. Kinematics for five freely swimming poachers indicate that individuals tend to swim near the bottom (within 1cm) with a consistently small (less than 1 degrees ) pitch angle of the body. When the poachers swam more than 1cm above the bottom, however, body pitch angles were higher and varied inversely with speed, suggesting that lift may help overcome negative buoyancy. To determine the contribution of the body to total lift, fins were removed from euthanized fish (n=3) and the lift and drag from the body were measured in a flume. Lift and drag were found to increase with increasing flow velocity and angle of attack (ANCOVA, p<0.0001 for both effects). Lift force from the body was found to supply approximately half of the force necessary to overcome negative buoyancy when the fish were swimming more than 1cm above the bottom. Lastly, flow visualization experiments were performed to examine the mechanism of lift generation for near-bottom swimming. A vortex in the wake of the pectoral fins was observed to interact strongly with the substratum when the animals approached the bottom. These flow patterns suggest that, when swimming within 1cm of the bottom, poachers may use hydrodynamic ground effect to augment lift, thereby counteracting negative buoyancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locomotion in sturgeon: function of the pectoral fins.

Pectoral fins are one of the major features of locomotor design in ray-finned fishes and exhibit a well-documented phylogenetic transition from basal to derived clades. In percomorph fishes, the pectoral fins are often used to generate propulsive force via oscillatory movements, and pectoral fin propulsion in this relatively derived clade has been analyzed extensively. However, in the plesiomor...

متن کامل

Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata.

The classical theory of locomotion in sharks proposes that shark pectoral fins are oriented to generate lift forces that balance the moment produced by the oscillating heterocercal tail. Accordingly, previous studies of shark locomotion have used fixed-wing aircraft as a model assuming that sharks have similar stability and control mechanisms. However, unlike airplanes, sharks are propelled by ...

متن کامل

Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish.

A full understanding of the mechanics of locomotion can be achieved by incorporating descriptions of (1) three-dimensional kinematics of propulsor movement, (2) material properties of the propulsor, (3) power input and control and (4) the fluid dynamics effects of propulsor motion into (5) a three-dimensional computational framework that models the complexity of propulsors that deform and chang...

متن کامل

Bluegill Lepomis macrochirus synchronize pectoral fin motion and opercular pumping

The relative timing between operculum and pectoral fin motion was examined in swimming bluegill Lepomis macrochirus to determine if respiratory fluid flows from the operculum might have an effect on flow over the pectoral fin. Five bluegill were filmed swimming at speeds from 0 5 to 1 5 body (total) lengths s . The timing of opercular pumping and pectoral fin beating was noted and analysed usin...

متن کامل

Functional morphology of the pectoral fins in bamboo sharks, Chiloscyllium plagiosum: benthic vs. pelagic station-holding.

Bamboo sharks (Chiloscyllium plagiosum) are primarily benthic and use their relatively flexible pectoral and pelvic fins to rest on and move about the substrate. We examined the morphology of the pectoral fins and investigated their locomotory function to determine if pectoral fin function during both benthic station-holding and pelagic swimming differs from fin function described previously in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zoology

دوره 112 5  شماره 

صفحات  -

تاریخ انتشار 2009